本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
精确农业的当代机器人主要集中于自动收获或遥感以监测作物健康。关于在田间收集物理样品并将其保留以进行进一步分析方面的工作相对较少。通常,果园种植者手动收集样品叶子,并利用它们进行茎潜在的测量,以分析树木健康并确定灌溉常规。尽管该技术受益于果园的管理,但收集,评估和解释测量的过程需要大量的人工劳动,并且通常会导致不经常采样。自动抽样可以为种植者提供高度准确和及时的信息。这种自动化的原位叶子分析的第一步是识别并切割从树上的叶子。此检索过程需要新的驱动和感知方法。我们提出了一种使用深度摄像头的点云数据来检测和定位候选叶子的技术。该技术在鳄梨树的室内和室外点云上进行了测试。然后,我们在六道机器人臂上使用定制的叶片剪切端效应器,通过从鳄梨树上切下叶子来测试拟议的检测和定位技术。使用真正的鳄梨树进行实验测试表明,我们提出的方法可以使我们的移动操纵器和自定义最终效果系统能够成功地检测,定位和切割的叶子。
translated by 谷歌翻译
黑色士兵苍蝇(BSF)可以是传统处理食物和农业废物(生物塑料)(例如垃圾填埋场)的有效替代方法,因为其幼虫能够迅速将生物塑料转变为现成的生物量。但是,仍然存在一些挑战,以确保BSF耕作在不同的规模上经济可行,并且可以广泛实施。需要手动劳动,以确保从充气喂食基板到监测生长周期中的非生物条件,以确保恢复幼虫的最佳条件。本文介绍了一种概念验证自动化的方法来饲养BSF幼虫,以确保最佳的生长条件,同时减少体力劳动。我们用“智能盖”改造现有的BSF饲养箱,称其为盖子的热盘性质,并带有多个垃圾箱。该系统会自动为幼虫 - 迪埃特底物充气,并实时向用户提供幼虫的生物信息。提出的解决方案使用自定义曝气方法和一系列传感器来创建软实时系统。使用热成像和经典计算机视觉技术监测幼虫的生长。实验测试表明,我们的自动化方法与手动技术相当产生BSF幼虫。
translated by 谷歌翻译
This paper presents a novel framework for planning in unknown and occluded urban spaces. We specifically focus on turns and intersections where occlusions significantly impact navigability. Our approach uses an inpainting model to fill in a sparse, occluded, semantic lidar point cloud and plans dynamically feasible paths for a vehicle to traverse through the open and inpainted spaces. We demonstrate our approach using a car's lidar data with real-time occlusions, and show that by inpainting occluded areas, we can plan longer paths, with more turn options compared to without inpainting; in addition, our approach more closely follows paths derived from a planner with no occlusions (called the ground truth) compared to other state of the art approaches.
translated by 谷歌翻译
We introduce an imitation learning-based physical human-robot interaction algorithm capable of predicting appropriate robot responses in complex interactions involving a superposition of multiple interactions. Our proposed algorithm, Blending Bayesian Interaction Primitives (B-BIP) allows us to achieve responsive interactions in complex hugging scenarios, capable of reciprocating and adapting to a hugs motion and timing. We show that this algorithm is a generalization of prior work, for which the original formulation reduces to the particular case of a single interaction, and evaluate our method through both an extensive user study and empirical experiments. Our algorithm yields significantly better quantitative prediction error and more-favorable participant responses with respect to accuracy, responsiveness, and timing, when compared to existing state-of-the-art methods.
translated by 谷歌翻译
We introduce a new benchmark dataset, Placenta, for node classification in an underexplored domain: predicting microanatomical tissue structures from cell graphs in placenta histology whole slide images. This problem is uniquely challenging for graph learning for a few reasons. Cell graphs are large (>1 million nodes per image), node features are varied (64-dimensions of 11 types of cells), class labels are imbalanced (9 classes ranging from 0.21% of the data to 40.0%), and cellular communities cluster into heterogeneously distributed tissues of widely varying sizes (from 11 nodes to 44,671 nodes for a single structure). Here, we release a dataset consisting of two cell graphs from two placenta histology images totalling 2,395,747 nodes, 799,745 of which have ground truth labels. We present inductive benchmark results for 7 scalable models and show how the unique qualities of cell graphs can help drive the development of novel graph neural network architectures.
translated by 谷歌翻译
大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
自动驾驶汽车必须能够可靠地处理不利的天气条件(例如,雪地)安全运行。在本文中,我们研究了以不利条件捕获的转动传感器输入(即图像)的想法,将其下游任务(例如,语义分割)可以达到高精度。先前的工作主要将其作为未配对的图像到图像翻译问题,因为缺乏在完全相同的相机姿势和语义布局下捕获的配对图像。虽然没有完美对准的图像,但可以轻松获得粗配上的图像。例如,许多人每天在好天气和不利的天气中驾驶相同的路线;因此,在近距离GPS位置捕获的图像可以形成一对。尽管来自重复遍历的数据不太可能捕获相同的前景对象,但我们认为它们提供了丰富的上下文信息来监督图像翻译模型。为此,我们提出了一个新颖的训练目标,利用了粗糙的图像对。我们表明,我们与一致的训练方案可提高更好的图像翻译质量和改进的下游任务,例如语义分割,单眼深度估计和视觉定位。
translated by 谷歌翻译
在人工智能的许多应用中,细粒度的变化检测和回归分析至关重要。实际上,由于缺乏可靠的基础真理信息和复杂性,因此这项任务通常是有挑战性的。因此,开发一个可以代表多个信息源的相关性和可靠性至关重要的框架。在本文中,我们调查了如何将多任务指标学习中的技术应用于实际数据中的细粒度变化。关键思想是,如果我们将一个单个对象的特定实例之间的兴趣指标中的增量变化纳入作为多任务指标学习框架中的一项任务,然后解释该限制将使用户被警报以对整体度量的整体度量不变。研究的技术是专门针对处理异质数据源的专门量身定制的。每个任务的输入数据可能包含缺失的值,该值的比例和分辨率在任务之间不存在,并且数据包含非独立且相同分布的(非IID)实例。根据我们最初的实验实施结果的结果,并讨论了该域中的相关研究,这可能为进一步的研究提供了方向。
translated by 谷歌翻译
可靠,高分辨率气候和天气数据的可用性对于为气候适应和缓解的长期决策提供了重要的意见,并指导对极端事件的快速响应。预测模型受到计算成本的限制,因此通常以粗空间分辨率预测数量。统计降尺度可以提供高采样低分辨率数据的有效方法。在这个领域,经常使用计算机视觉中超分辨率域中的方法成功地应用了深度学习。尽管经常取得令人信服的结果,但这种模型在预测物理变量时通常会违反保护法。为了节省重要的物理量,我们开发的方法可以通过深层缩减模型来确保物理约束,同时还根据传统指标提高其性能。我们介绍了约束网络的两种方法:添加到神经网络末尾的重新归一化层,并连续的方法随着增加的采样因子的增加而扩展。我们使用ERE5重新分析数据显示了我们在不同流行架构和更高采样因子上的方法的适用性。
translated by 谷歌翻译